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On longitudinal motion in a magnetic field 

By H. P. GREENSPAN 
Mathematics Department, Massachusetts Institute of Technology 

(Received 6 June 1960) 

A n  exact solution is presented of the equations and boundary conditions 
governing the steady longitudinal motion of a semi-infinite non-conducting plate 
in an oblique magnetic field. The discussion covers the distortion of the boundary 
layer, the structure of the induced electric and magnetic fields, the current- 
density distribution, and the behaviour of the fields near the edge of the plate. 

1. Introduction 
The steady longitudinal motion of an infinitely long cylinder in an unbounded 

viscous conducting fluid has recently been considered by Hasimoto (1960). 
(Longitudinal motion refers to motion parallel to the generators of the cylinder.) 
If the applied magnetic field is perpendicular to the axis of the cylinder, the 
fundamental magnetohydrodynamic equations are linear and more amenable 
to analysis. In  particular, an interesting explicit solution was presented in the 
aforementioned paper, for the special case of a semi-infinite plate moving in a 
conducting fluid with a magnetic field directed perpendicular to the plate. 

In  this paper, we consider a generalization of this problem in which a rigid 
non-conducting plate is moved with constant velocity in an obliquely incident 
uniform applied magnetic field. (Viscosity and electrical conductivity are 
assumed uniform and constant.) Although the motion which develops is no 
longer symmetrical with respect to the plane of the plate (the z-axis), it is still 
possible to solve the problem explicitly in terms of elementary known functions. 
Many interesting features such as the behaviour of the magnetic field near the 
edge of the plate and the structure of the boundary layer can then be studied in 
exact detail. 

2. Theory 
Consider the impulsive longitudinal motion of a semi-infinite flat plate in the 

configuration shown in figure 1. Initially, the induced electromotive force, 
q x H,, drives a current ‘into’ the plate, i.e. the component of current normal to 
the plate isnon-zero. Since the plate is anon-conductor, charge separation occurs. 
The plate acquires a double-layer dipole-charge distribution and the fluid acquires 
a volume-charge density. As a consequence, the electric field which is thus 
created turns the current away from the boundary thereby reducing the normal 
component of the current at the plate to zero. Off the plate, however, electric 
currents can, and do, flow from one half-plane to the other. 

The disturbances produced in the flow at and near the plate are propagated 
along the magnetic field lines by Alfvh waves, diffusing, in the process, because 
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of viscosity and electrical conductivity. Since the Alfv6n waves propagating 
along those field lines which intersect the plate, arise in the regions of greatest 
vorticity and current generation, the ‘steady’ configuration should show that 
the disturbance is concentrated predominantly in a skewed right half-plane. 
We expect then, that the line x = y cot a divides the plane into a region of intense 
disturbance and a region of relative quiescence. 

Furthermore, we expect that the disturbances appearing between the applied 
field lines Ll and L2 (a distance d apart) are in some way proportional to the length 
of plate, d cosec a, which these lines intercept. 

FIGURE 1. Basic codguration. 

We can then infer that there is probably no steady solution in which the 
induced quantities are zero at infinity ( - x -+ co), if the magnetic field is directed 
parallel to the plate, a = 0. In  this case, the projected plate length is infinite, 
indicating that the disturbances contained between these field lines arise in the 
entire boundary layer and may then be of sufficient strength to produce non-zero 
perturbations everywhere at  infinity. Although the argument is crude, we will 
verify this conclusion in a subsequent paragraph. 

The steady flow we refer to is that which would occur if no Alfvdn waves 
reflect from the outer boundaries and return to the finite domain. If R is the 
distance to the outer boundary and t is the time, the conceptual limit process is 
lirn lim . This limiting procedure is of course non-uniform and it has been shown, 

Carrier & Greenspan (1959), that the reverse procedure ( lim lim ) may result in a 

different steady-state solution. The effects of the reflected Alfvdn waves can 
indeed be important. In  any event, the ‘steady’ solution derived here will be 
valid in any finite domain after the passage of the initial wave train and before 
the return of their reflexions from the outer boundaries. 

The induced currents, in the problem under consideration, lie in the plane of 
the applied field and thereby constitute infinitely long solenoids of current. The 
induced magnetic field is then parallel to the edge of the plate and in particular 

t-+w R+m 

R-+w t+w 
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is zero on the plate. The fluid velocity is also in the direction of motion and all 
quantities are functions of the space co-ordinates x and y alone. As a consequence 
V . q = 0 and the flow is incompressible. For simplicity, however, we will assume 
that the density is constant although the results are valid for a more general 
situation. 

The basic equations governing the flow are 

1 
(q.V)q = --VP+p(j P xH)+vVZq, 

v . q  = 0, 

V x H =  j = u(E+pqxH),  

V . H = V x E = O ,  

V.E =pe.  

Since H = H, cos ai, + Hosin ai, + h(z, y) i,, 

q = v(x, y)P,, E.P, = j . f ,  = 0, 

these equations can be reduced to 

vV2v + /" - H,(h, cos a + hl/ sin a) = 0 
P 

and 
1 
- V2h + H,(v, cos a + wy sin a) = 0. 
Pfl 

In  terms of dimensionless (primed) quantities representing length, 
I = v(@?)-~'V;~Z'; velocity, v = qv'; magnetic field h = Hod/3-4h'; and electric 
fieldE = yvoHOE',wheree = pvcand = pHt/p V &  these equationsbecome (upon 

dropping the primes) V2v + (h, cos a + h, sin a) = 0, 

V2h + (v, cos a + vy sin a)  = 0. 

(3.1) 

(2.2) 

The boundary conditions are 

h(x,O) = 0, 

v(z,O) = 1, 
} (x 2 0) 

with lim ~ ( x ,  y) = lim h(z,y) = 0. 
x-+- m z-+- m 

The first condition, h = 0 for x 2 0, requires further explanation. 
Consider a plate of finite length 21, and infinitesimal thickness, 26, with the 

origin of the x, y co-ordinate system located at its centre as shown in figure 2. 
Since the plate is an insulator j . fi = 0 = ah/&, on its surface, the contour C. 
(In the limit, as 6 becomes zero, this condition is {ah(x,O))/ax = 0 for 1x1 < 1 . )  
Therefore, the induced field has a constant value on (and inside) the plate. In 
order to determine this constant, another condition must be utilized and it is 
easily shown (Hasimoto, 1960) that a further requirement is 
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where C, is the external perimeter. (This constraint may be deduced in the follow- 
ing way. Since the electric field is irrotational, 

E.d5 = 0. fc- 
However, the tangential component of the electric field is continuous across the 
plate so that 

or in terms of the magnetic field 

E.dg = 0 

The second integral is zero because the integrand is a constant on the contour 
C,. The first then reduces to the foregoing condition.) 

I' 

FIGURE 2. The finite flat plate. 

In  particular, as 6 -+ 0, this condition becomes 

(The induced charge distributions on the upper and lower surfaces coalesce to 
form a dipole layer.) 

We must now prove that the solution (for 6 = 0 )  which satisfies the boundary 
condition h(x, 0) = 0 for 1x1 < 1 also satisfies this additional constraint. 

Let do)(s,y) and h(O)(z,y) be solutions of the basic equations (2.1) and (2.2) 
which vanish at infinity and assume the values v"J)(z,O) = 1, h(O)(x,O) = ho (an 
arbitrary constant) on the plate, 1x1 < 1. It is easily verified that the functions 

w(z, y) = d o ) (  - x, - y), 

g(z, y) = -W)( -z, -y) 

are also solutions of the fundamental equations which assume the values w = 1 
and g = -h, on the plate. Using the principle of superposition, we obtain the 
solutions 42, y) = B[v(O)(z, y) + V(O)( - 2, -!/)I, 

4x7 y) = 3[h(o)(x, y) - h(O)'( - 5, - y)l, 
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which have the properties 
v(x,y) = 4--, -Y), 
W , y )  = - h ( - x ,  -y), 

v(z,O) = 1, h(x,O) = 0 for 1x1 < 1. 
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The function h, so defined satisfies the integral constraint and is zero on the plate. 
To prove this, we rewrite the integral condition as 

1 s,’ [hz(x, 0 + ) - h,(x, 0 - ) I  ax+ [h,( - x, 0 + ) - h.,( - 5 ,0  - ) ] a x  = 0, lo 
where the numerical subscript two denotes differentiation with respect to the 
second variable, i.e. hz(z, y) = h,(x, y). From the definition of h(x, y), however, 
it follows that 

h&,O+) = h,(-x,O-); 
h,(z,O-) = h,(-z,O+). 

Substituting these values in the preceding equation reduces it to an identity 
proving the proposition. Therefore, the unique solution for which h = 0 on the 
plate also satisfies the addition integral condition. Since the semi-infinite plate 
is but an idealization of a long finite plate it is evident that h(x, 0) = 0 for x 2 0 
is the correct boundary condition. 

Physically, this fact that the induced field is zero on the plate implies that 
there are no closed current paths containing the plate. It is known that this is the 
case when a = &r. The effect of the oblique field is to stretch and distort current 
lines as shown in figure (5) .  

We can now proceed to solve the boundary-value problem, equations (2.1), 
(2.2) et seq. Let 

$ = v-h, 

then 

with #(x,O) = 1 on x: > 0 and lim 4 = 0; 

and 

with $(x,O) = 1 on 2 2 0 and lim $ = 0. 

We now have two completely independent problems to solve. 
In  the particular case a = 0, equation (2.3) is identical with that governing 

conduction of heat in a fluid flowing with unit negative velocity from x = + co 
past a semi-infhite plate with unit temperature extending between 0 < x < co. 
It is evident that under these conditions the temperature in the entire fluid 
region is unity so that lim q5 # 0. The case a = 0 is then distinguished from all 

others, in that a solution of the foregoing boundary-value problem does not 
exist. * 

* The problem is stillequivalent, after a simple variable substitution, to that for heat trans- 
fer with a negative velocity field; however, the plate temperature is exp [ - z( 1 - cos a)/2] 
and the solution exists. 

Vz$ + r$z cos a + 4, sin a = 0, 

V2+ - (Sl., cos a + $v sin a) = 0, 

(2.3) 

z-+- m 

(2.4) 

x+-m 

x+-m 
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The solution of equations (2.1) and (2.2) is 

v = +(#+@I,  = iH#-$), 
where 

(2.5) 

@ = @(x, y) exp ( - 4y sin a), 
'l? = +[exp (4 lyl sin a)  erfc (7 cos +a + c sin Qa) 

0 = +[exp (+ I yI sin a )  erfc (7 sin +a + 6 cos +a) 

@ = Y(x, y) exp (4 y sin a), (2.6) 

+ exp ( - + 1 y I sin a) erfc (7 cos +a - 5 sin 4a)Iy (2.7) 

and 

+exp ( - 4 1y1 sina) erfc (7 sinQa-~cos 4a)](2.8) 

($+i7)2 = x+ilyl = rexpie. (2.9) 

A method of deriving these formulas is presented in the Appendix. It is now 
easily verified that the solution does indeed degenerate for a = 0. 

From these formulas, it can be shown that the viscous skin friction is 

VJX, 0 + ) - VJX, 0 - ) = [v,]!? = - 4 sina[G(x* sin +a) + G(x* cos +a)] 

and that the discontinuity in the tangential component of current density is 

(2.10) 

[h$f = + sin a[G(za sin Qa) - G(x8 COB +a)]. (2.11) 

(2.12) 
1 

Here G(x) = erfz+-exp(-xZ). 

Equation (2.11) shows that the tangential component of the electric field is 
discontinuous across the plate. There must then be a double layer (dipole) dis- 
tribution, of strength T,  on this surface (see Stratton (1941), page 191) given by 

Tax 

-VT = E+-E-, 

or 

The last equation can be integrated and the result is 

T(x) = +sins ["L--- ds in8a )  - F(xicos 
sin2 ga 

F(x)  = x2 erf x + T-*X exp ( - x ) ~  + Q erf x .  with 

(2.13) 

(2.14) 

At large distances from the edge of the plate, the following formulas hold 
(z+ilyl = rexpie); 

u N h N +exp[-Q(y+ lyl)sina] (a < 6 < n-a), 
h o (m-a < e < ..). 

It is seen that the line, x = y cot a, does indeed separate the plane into a region of 
intense disturbance, x > y cot a, and a region of relative quiescence x < y cot a. 
Along this dividing line v N h - & on 8 = T-a, y < 0 and v - -h  - a along 
0 = a, y > 0. The situation is summarized in figure 3. 
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Figure 4 shows the lines of constant value of the induced magnetic field, which 
are also the current paths, for the angle a = &r. The behaviour of the field or 
current near the edge of the plate is interesting. The zero field line (h  = 0) ,  which 

\ 

\\ v - h- +exp (-y sin a) 

\ 

v-f[l + exp (-y sin a)] 
h -  -f[l-em(-ysina)] 

v- t [ l  + exp (ysina)] 

\ 
\ 

\ 

FIGURE 3. Asymptotic values of the magnetic field and fluid velocity at large 
distances from the edge of the plate. 

FIGURE 4. The magnetic field (or current lines) induced by the longitudinal motion 
of an insulating plate in an oblique applied magnetic field. 

is the real axis fora = &r, is here distorted into the upper half-plane. One branch 
of the line is, of course, still the plate; the other emanates from the plate a finite 
distance from the edge and then continues into the second quadrant. 
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the condition j = 0, and it is found that 
The point on the plate, xo, at which this separation occurs is determined from 

G(x$sin Qa) - G(xi cos 401) = 2. 

The separation distance increases to infinity as a approaches zero. The quantities, 
vyy(x, 0 + ), h,(x, 0 + ), change sign from plus to minus as x becomes larger than 
xo. In  the vicinity of the edge, r < 1 ; 

h N n-47 (cos &a - sin +a), 
v N 1 - n+(cos +a +sin +a). 

In  general, current from the lower half plane penetrates into the upper and 
returns to close the loop. The motion of a long finite plate will also show this 
behaviour a t  the edges and the probable current distribution is shown in figure 5. 

FIGURE 5. The induced magnetic field or current lines for a long plate of finite length. 

Figure 6 illustrates the distortion of the boundary layer. The disturbance behind 
the dividing line is accentuated by the Alfv6n waves propagating along the field 
lines intersecting the plate. 

3. Conclusions 
An exact solution has been presented herein, which describes the longitudinal 

motion of a semi-infinite non-conducting plate in an oblique magnetic field. 
It is found that the plate becomes electrically charged by acquiring a double- 
layer distribution. The induced electric field turns the current away from the 
plate thereby reducing the normal component of current to zero at  the non- 
conducting surface. 

The disturbances are propagated into the fluid by Alfv6n waves. These waves 
move along the magnetic field lines; consequently, the predominant effects are 
found in the half-plane in which the magnetic field lines intersect the plate 
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(the area of greatest disturbance). The fluid boundary layer is distorted and 
stretched along the field lines as is the induced magnetic field. Electric currents 
arising in the lower half-plane penetrate the upper half-plane. One branch of the 
curve of zero field strength is of course the plate; the other branch emanates 
from the plate a finite distance from the edge and continues into the second 
quadrant. 

The behaviour of the solution near the edge should be of use in any problem 
involving the motion of a body with sharp corners in an oblique field. 

FIGTIRE 6. The velocity field produced by the Iongitudinal motion of a plate in an 
oblique applied magnetic field. 

Appendix 
The easiest way to solve equations (2.3) or (2.4) subject to the given boundary 

conditions is, of course, to guess the answer and then to verify it. A moredirect 
approach, requiring less ingenuity, is based on the Wiener-Hopf method. We 
will briefly sketch the manner in which equation (2.3) is solved; no new tech- 
niques are needed to determine the entire solution given in equations (2.7) and 
(2.8). 

Let 4 = @ exp ( - By sin a),  then equation (2.3) becomes 

with @(z,O)=l and @+O as x - t - c o .  

If we define the function 

and the, Fourier transform of an arbitrary function C ( x )  by 

V2@+@zcosa-&@sin2a = 0 

f(4 = @&, 0 -t - @&, 0 - 1 
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then it is found that 
1 -  

QP,Y) = -~ f (P )exP-mIYl ,  

where 

Since f(x) = 0 for x < 0 and @(x,O)  = 1, z 2 0, the usual arguments of the 
Wiener-Hopf method can be employed to determine ,f(p) from the last equation 
with y = 0. The result is 

m = [(p + +i cos .)2 + a]#. 

f(p) = - 2i( - +i( 1 - cos a))&(p + ii( 1 + cos a))& (p + id)-1 

@(x, y) = - ( - *i( 1 - cos a))& I(x, y), 

with 6 -+ 0 + . (An analysis similar to  this is contained in Greenspan & Carrier 
(1959).) Therefore i 

2n 

If we perform the following sequential operations we can evaluate this integral: 
(i) change the variable of integration to u = p + +i cos a; 

(ii) assume x > 0, and deform the contour into the path Imu = 0; 
(iii) change the variable to u = isinhh; 
(iv) deform the contour in the h plane into the path Imh = - in; 
(v) change the variable to 5 = h + +mi; 
(vi) change the variable to t = exp 6; 
(vii) use the known result 

The result is 

where 
I = - 2 4  - +i( 1 - cos a))-*[exp ( - + IyI sin a) + J ] ,  

J = +[exp (Q IyI sina) erfc (5 cos +a + 7 sin +a) 

+ exp ( - I y I sin a) erfc (t; cos +a - 7 sin +a)] 

and (t; + i7)2 = z + i I y I .  The remainder of the solution is completed in essentially 
the same way. 

It should be noted that several other problems involving unsteady motion 
on perfectly conducting plates are also soluble in this manner. 
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